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The whole is more than the sum
of its parts

Aristotle Metaphysica 1045a

Gregoire Nicolis (1929-2018) in his study room at ULB — CeNoLi circa 2015



Outline of the talk:

Prolegomena

Part 1. Out of equilibrium:
Active Matter & New Materials

Part 2. Dynamics of Information:
Decision making in Collective Motion
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Gregoire’s Nicolis Academic ‘Family’ Tree

RS et
SCIENCE | ¥

el i caetl

Henri
Poincaré

Poincaré, Henri De Donder, Théophile |lya Prigogine

(1854 - 1912) Ernest (1872-1957) (1917-2004)

ggﬁﬁi " ‘Brussels School of Second Law of

3—Body—>léroblem Thermodynamics'’ Ther_mo@ynamics,

Philosophy of Science Chemical Affinity, Dissipative structures,
Irreversibility ... Order out of Chaos,

Time's arrow



Gregoire Nicolis’ Encomium & Heritage:

Open Systems &
the 2nd Law of Thermodynamics

Dissipative Structures
Bifurcations & Chaos
Self-Organization & Pattern Formation

Constructive Role of Fluctuations & Chaos
(+ Stochastic Resonance)

Self-reference & Nonlinear Feedback 4

Information Dynamics
(+ Entropy & Symbolic Dynamics + Prediction )

Emergence & Irreversibility
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FOUNDATIONS or
COMPLEX SYSTEMS

Nonlincar Dynamics, Statistical Physics, Information
and Prediction

Gregoire Nicolis = Catherine Nicolis

TO
NONLINEAR
SCIENCE

G NICOLIS

GREGOIRE NICOLI
ILYA PRI G|

grégoire nicolis - ilya prigogine

a la rencontre
du complexe

Self-Organization in
Nonequilibrium Systems
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Complex =
many parts + nonlinear relations

Chapter 1.:
“The many facets of complexity”
by Gregoire Nicolis (2019)

Phenomenology of Complexity

Formulation

a) Deterministic view

b) Probabilistic approach
E m er gen Ce E?tigkc-fAP?-'{:I|[1ILéI;=.11rE|1

Erik Steur

Complexity and Information

]
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The Importance of Being Nonlinear:
Information flow
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Only Nonlinear Elements can process
information, i.e ... compute !!!




The Importance of Being Nonlinear:
Bifurcations & Multistability
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Figure 6.5: Bifurcation diagram for the QDE 2" = A + = — 2,

Only Nonlinear Elements
can have dynamic memory !!!
(Hysteresis)




“Nonlinear science introduces a new way of thinking based
on a subtle interplay between qualitative and quantitative

techniques, between topological, geometric and metric
considerations, between deterministic and statistical aspects.

It uses an extremely large variety of methods from very

diverse disciplines, but through the process of continual
switching between different views of the same reality these
methods are cross-fertilized and blended into a wunique
combination that gives them a marked added value.

Most important of all, nonlinear science helps to identify the
appropriate level of description in which unification and
universality can be expected.”’

“Introduction to Nonlinear Science”
by Gregoire Nicolis
(Cambridge Univ. Press, 1995)



«...appropriate level of description ...”?

TO
NONLINEAR
SCIENCE

G NICOLIS

¢...topological, geometric, metric ...”



The Brusselator:
honlinear Feedback, Bifurcations, Chaos
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“...The fluctuations involved are not fluctuations in concentrations
or other macroscopic parameters but fluctuations in the
mechanisms leading to modifications of the [kinetic] equations...”

G. Nicolis and I. Prigogine

Self-Organization in
Nonequilibrium Systems
P Dosigrative Struciern 1o

Oetder thromph Fltisatiens

G. Nicalis
L Prigogine

in: “Self-Organization in Nonequilibrium Systems:
From Dissipative Structures to Order through Fluctuations”
discussing auto-catalytic reactions and Manfred Eigen's “hypercycles”



Outline of the talk:

Part 1. Out of equilibrium:
Active Matter & New Materials



PART 1: ACTIVE MATTER

self-organization, dynamics, emergence,

new ("smart")materials

1
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sition to Rayleigh—Bénard patterns arising beyond the instability of t

Fig. 1. Upper part: Simple pendulum. Lower part: Three manifestations of Complexity in everyday
experience. Clockwise Bird flocking, the earth-atmosphere system, trading in the stock market.




Statistical Mechanics and
Thermodynamics
Presiding to
the Self-organization of Matter

with thanks to Pierre Gaspard
(ULB)




Non (-) equmbrlum or Nonequmbrlum?
-*-.rm =) r . 5

: G A TABLE VIII. The average time of recurrence of a state of
Z g v+ fluctuation in which the molecular concentration in a
; :%‘ <A ¥ ,_'_‘__ﬂ’_;:f sphere of air of radius a will differ from the average value
o _;‘;: E 5 by 1 percent. T'=300°K; |»=3X 10X (4ma?/3).

S el Ca(em) 1 5X107 3X107 2.5%107F  1X107
Pah o ©  O(sec.) 1010* 108 108 1 10-1

sider, following Smoluchowski, the average time




EQUILIBRIUM VERSUS NONEQUILIBRIUM

- reactants o—
AG = free energy supply “\>
by reactive event

products

out of equilibrium: aG<o)|
AG <0
rate > 0 Ac® |

™

P e
2" Jaw of thermodynamics

entropy production rate AG

1l
<

-

Il equilibrium: i I i
dS = AG AG=0
E - _T x rate =0 rate =0 AGY
—

Th. De Donder

I. Prigogine o
P. Glansdorff out of equilibrium: AG ::»DT

G. Nicolis AG>0 P

rate <0 AGD l




PRINCIPLES OF DYNAMICAL ORDERING AT THE NANOSCALE
FLUCTUATION THEOREM FOR CURRENTS

fluctuating currents: ex: * electric currents in open quantum systems
* rates of chemical reactions
J=AN/t, Ar/t .
e velocity of a molecular motor
De Donder affinities or thermodynamic forces: _ AG (free energy sources)
(non-fluctuating) kT
Stationary probability distribution P, (J) : p (J)
* No directionality at equilibrium A =0 il B er(A' J ;)
« Directionality out of equilibrium A # 0 Pﬁ(—J) 1=
consequence of microreversibility
: . : 1 d.8
The thermodynamic entropy production is always non-negative: ———=A- < J )A 0
COUPLING BETWEEN THE CURRENTS kB dt

D. Andrieux & P. Gaspard, J. Chem. Phys. 121 (2004) 6167; J. Stat. Phys. 127 (2007) 107

THEOREM OF NONEQUILIBRIUM DYNAMICAL ORDERING

Out of equilibrium, the typical histories are : .

' ' S Prob(typical histo A,
more probable than the corresponding time- (typ ry) e _lS
reversed histories: dynamical order. Prob(time - reversed history) ky

P. Gaspard, J. Stat. Phys. 117 (2004) 599: C. R. Phys. 8 (2007) 598



BIOMOLECULAR MOTORS & PROCESSORS

Rotary motor: F,-ATPase + filament/bead K. Kinosita and coworkers (2001,2004)
Itoh et al., Nature 427 (2004) 465

ATP hydrolysis drives the rotation. A mechanical force is also applied.

" .
Magnetic bead

ATP hydrolysis/synthesis

is coupled to Streptavidin —

T=300 K mechanical motion/force. sy complex
power = 1078 Watt

Linear motor: kinesin-microtubule

Wikipedia



NONEQUILIBRIUM DIRECTIONALITY
IN THE F, -ATPase MOTOR

40 nm
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Random trajectories
observed in experiments:

R. Yasuda. H. Noji, M. Yoshida,
K. Kinosita Jr. & H. ltoh,

Nature 410 (2001) 898

at equilibrium:

...212132131223132...

(random)

out of equilibrium:
...123123123123123...

(more regular)

o0

——[ATP]=2 pM_

L 'l A L i " " L Il L L i
0.04 0.06 0.08 0.1

time (s)

Simulations of random trajectories:
P. Gaspard & E. Gerritsma,
J. Theor. Biol. 247 (2007) 672

detailed balance between
forward and backward rotations,

Iero currents

directionality of motion:
non-zero currents,

dynamical order



OUT-OF-EQUILIBRIUM MOLECULAR MACHINES

Nanosystems sustaining fluxes of matter or energy, dissipating energy supply

Examples: - rotary or linear molecular motors
- ribosome: translation from mRNA to proteins
- RNA or DNA polymerase: transcription or replication

Equilibrium:
e no flux <J}*> =0

* no entropy production — =0
dt

* no energy supply needed

* in contact with one reservoir

e structure in 3D space

* no directionality

Nonegquilibrium:

e flux <JT>#0

e entropy production —— >0
dt

* energy supply required

* in contact with several reservoirs

* dynamics in 4D space-time

* directionality, dynamical order, function

P. Gaspard, in A. S. Mikhailov & G. Ertl, Editors, Engineering of Chemical Complexity (World Scientific, 2013) pp. 51-77



SELF-PHORETIC (self-steering) MOTORS
PROPULSION BY SELF-DIFFUSIOPHORESIS

The fluid flow is modified by the interaction of reactant A and product B with the active particle

(a)

Bo

Janus particle with catalytic (C)
and non-catalytic (N) hemispheres

A®~

fluid velocity field

10

0

theory

simulations
-]H

-10 -3 0 5 10 o
- i T & B 4 B B ¥ B A N
concentration field of product B

S.Y. Reigh, M.-J. Huang. J. Schofield & R. Kapral,

M.-J. Huang, J. Schofield & R. Kapral, Soft Matter 12 (2016) 5581 Phil. Trans. R. Soc. A 374 (2016) 20160140



MECHANOCHEMICAL COUPLING FOR ENERGY TRANSDUCTION

MOLECULAR MOTORS ACTIVE PARTICLES
: A
I: mechanical work Z. g
II: fuel synthesis
A Arm = WTHII‘JIDTEII
20
9 I
ks I
2 10¢ ”
z m_n %y equilibrium
= equilibrium f 0
-g II / 0 Amr.:ch: ﬁcht
] -
E
E
T:g . J.=0
= 10}
: &
2 =0 =
] W
~20 - - -
=20 -10 0 10 20

mechanical force

P. Gaspard & R. Kapral, Adv. Phys. X 4 (2019) 1602480



MOLECULAR INFORMATION PROCESSING



INFORMATION STORAGE IN COPOLYMERS

Jean-Francois Lutz, Makoto Ouchi, David R. Liu, and Mitsuo Sawamoto,
Sequence-Controlled Polymers, Science 341 (2013) 628

-} } H ]. ) - H |. i .[' ].
-HE0E0UE- | -UBU0GE

Precise molecular encoding of synthetic polymer chains. In most synthetic copolymers, monomer units
(represented here as colored square boxes A, B, C, and D) are distributed randomly along the polymer chains
(left). In sequence-controlled polymers, they are arranged in a specific order in all of the chains (right).
Monomer sequence regularity strongly influences the molecular, supramolecular, and macroscopic properties of
polymer materials.

Howard Colquhoun and Jean-Francois Lutz, Information-containing
macromolecules, Nature Chemistry 6 (2014) 455




COPOLYMERIZATION PROCESSES

statistical copolymer = spatial support of information
= aperiodic crystal by E. Schrodinger, What is Life? (1944)

time

catalyst

AABABAABBBAB growing copolymer —> LO onomers
AABABAABBBA - —0—0—0—0—0—0l ~—@
AABABAABBD free copolymerization:
iiﬁigiiEB statistical copolymers
AABABAA ex: ethylene/1-octene copolymer
AABABA
AABAB iho copol catalyst
ik - growing copolymer ’/. o onomers
it s imgo—o—o—o—o—
iigA template
AA sowcailiiom template-directed copolymerization:
A oWk pros ex: DNA replication
DNA-mRNA transcription
space mRNA-protein translation

D. Andrieux & P. Gaspard, Nonequilibrium generation of information in copolvmerization processes
Proc. Natl. Acad. Sci. U.S.A. 105 (2008) 9516



THERMODYNAMICS OF COPOLYMERIZATION

free copolymerization

4 ' ‘ MONOMETS

growing copolymer o

growth velocity: v i
free-energy driving force: ¢ = —% catalyst {fy
sequence disorder: D ’
1 dS
entropy production rate: e v [E + D(SEqUE:IICE)] >0
B
template-directed copolymerization : O &
growing copolymer i
monomers
mutual information between
the copy and the template: / template
; 1 dS
entropy production rate: Y [E + D(copy) — 1 (copy,template)] >0
B

D. Andrieux & P. Gaspard, Nonequilibrium generation of information in copolymerization processes
Proc. Natl. Acad. Sci. U.S.A. 105 (2008) 9516



“Coarse Graining”
“Symbolic Dynamics”
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Poincaré (1890s) & Maxwell:
Nonlinear dynamical

systems can exhibit sensitive
dependence on initial conditions

Hadamard (1898):
motion on negative curvature
is sensitive to initial conditions

Artin, Heldund and Hopf: the motion on a surface of
constant negative curvature is ergodic.

Krylov: A physical billiard is a system with negative
curvature, along the lines of collision

Sinai: a physical billiard can be ergodic.



J. Stat. Phys. 54,3/4, 1989
"Chaotic Dynamics, Markov Patrtitions,& Zipf's Law”
G. Nicolis, C. Nicolis, J.S. Nicolis

Xpo1=4x,(1—x,), 0<x<!
period-two orbit x; ~0.345, X, ~0.905

' 12 12 0 -
W:(o 2 1 W21 = P(a - B)

... &C.
1 0 O

N
P, (i)= Z WﬁPn(j)ﬂ i=1,., N
Fa]

aapyappaaypappybappaaappapaaBppayaappyybapy ... &c.



The Shannon Block Entropy of the partition is :

H(m)=— Z P(w)In P(w)

all m-words

where P(w) is the probability of occurrence of each word, w, of length m

"The key is to realize that uncertainty represents potential information”
(David Applebaum)

Shannon-McMillan Theorem :
The probability of a word of length m to appear
is "penalized” according to Entropy scaling w.r.t. its length

Plw(n)] ~ e~ H(m)




A Conjecture by Ebeling and Nicolis
In the course of their analysis of symbol sequences they proposed a general scaling
law for the block entropy.

s

H,, = mh+ gmt (logm)” + e
s H = hm
{0 E +—— Lorenz o e i :
«—— Rossler s :
E e o Fibonacci E H — g_mp:
8
7E
H(m) ¢ ¢
=
4 - = .
3 E H:]Dg(m)
o | ;
(- :
05

Q2 gt 8 102 id 618 B0 20NE4 1 P08 P8 SO ISS
m



- A. Provata and Y. Almirantis, Statistical dynamics of clustering in the
genome structure, J. Stat. Phys. 106, 23-56 (2002).

- Y. Almirantis and A. Provata, Long- and Short-Range Correlations in
Genome Organization, Journal of Statistical Physics, Vol. 97, Nos. 12, 1999

3

10
(5b)
& B B E8CEBEEEBEREAEE
QEBEDQDG
m]
10°
2
e
- o coding
LA O non—coding
1{]“ i il el Yokl 1 : a o e W T | . . .-
10° 10' 107 10” 10*

S

Fig. 5. The number of coding and non-coding regions of size =5, N §), for three fungal
DMNA sequences. The straight lines have the following slopes: (5a) —u= —038, (5b)
—pu=—1.8and (5¢) —u=—1.3.



META-SELECTION RULES:

Syntax, Context & Semantics

“We are no where”

“We are now here”

4 8 12 16 .. 20 24 28 32

AUTOMATICITY & context:

K. Karamanos and G. Nicolis,

"Symbolic dynamics and entropy analysis of Feigenbaum limit sets”,
Chaos, Solitons & Fractals 10(7), 1135-1150 (1999).

META-SELECTION RULES, context & the 'Nicolis-Ebeling Conjecture':

Vasileios Basios, Gian-Luigi Forti gnd Gregoire Nicolis
“Symbolic Dynamics Generated By A Combination Of Graphs”
Int. J. of Bifurcation and Chaos vol. 18, no. 08, pp. 2265-2274 (2008)




A new paradigm of nucleation
and
selt-assembly



Complex Matter Science initiative at ESA
&
the SOYUZ missions in ISS

€= esa sverciald AN 0N



stealing an idea from Gibbs to understand nucleation:

e AG =r(i) AG(i)-TAS(r(i))

Free energy

[ dAG / dr(i) 1=0, at r = r*(i)
Equilibrium Assumption

metastable stable
slate A stale B

Josiah Willard Gibbs
(1839 - 1903)

critical limiting supersaturation

..............................................

= Gibbs free energy c
change of nucleation max

AH AT 4xr°

rapid self-nucleation

m

AG =

Tm 3 g Cmin ...........................................
Critical nucleus size -é growth
o 2T S Y 205 DU ) S
AH AT o bs

Energy barrier towards
nucleation

Gibbs free energy change

e

6z 7’1,
3 AHIAT?

AG*=

Nucleus size r

time



... but why didn’t | think
~ about THAT ?7?!!

TWO-steps, ONE order-parameter

TWO-steps, TWO order-parameters .

b
OO X
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Non standard nucleation mechanisms with combined

structural and density fluctuations

structure
N
L™
\

.--"f 4 *

y 4 e 9

4 g -~ vy "I;
¢ -
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J J " g JJ

4

>
density

“Nonlinear Dynamics and Self-organization

in the Presence of Metastable Phases”
G. Nicolis & C. Nicolis



Hierarchical aggregation of Zeolites:
2"! order parameter = Q4 number of Si bonds

164701-2

order parameter

FI(: 1. A schematic demonstration of mnlhsten versns standard svnthenc

Lutsko et al

pathway
via structured intermediates

standard pathway
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Two Step Aggregation:
Phoretic Synergetic Carriers as
Auto-catalytic Self-replicators

a Autocatalytic processes h Autocatalytic formation coupled to thermodynamic destruction
Autocatalysis Autocatalysis

]
g~

an
TLLL
am

A A Catalyst Catalyst €]
S N cimeee ———— e © —_— o ; :

B Formation B Formation Destruction £ Nl Ugma
Phasa Phass Hinetic Thermodynamic
SEparation Tima saparation Time

C Schematic representation of the transient self-assembling self-replicator system

Autocatalysis
", V

'
B o)

e _*®

Phase separation Kinetic

Monomer

Fig. 1 Examples of autocatalysis. a An autocatalytic system based on phase separation. b An autocatalytic system based on phase separation, coupled to
thermodynamic destruction, that in a closed set-up experiment will evolve towards thermodynamic equilibrium. € Schematic representation of a transient

self-assembling self-replicator system

y MATURE COMMUNICATION | (2018)9:2239 |DDI: 10.1038/s41467-018-04670-2 | www.nature.com, naturecommunications



Two Step Aggregation:
Phoretic Synergetic Carriers as
Auto-catalytic Self-replicators
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Diversion: “many-step aggregation in social animals”

Trophallaxis Colony's Social
Stomach filling up

Emergence of specialized individuals (loaded-unloaded)

Two ants model




Hierachical Self-assembly and Phoresis in Biological Communities
(what if ... molecules were ants ??7? ;-)

A 1
| —random
| o lday
0'8_ ad days
0.6}
E |
0.4}
0.2}
0 30 100 150 200 250
Surface (pixels)
B 1
mé a4 A Ha P AAA
0.8} A AL saa
A}& é, A:
0.6} 5
E £ .; "‘ ..' :: &2
0.4 [g@F —random
o 1 day
028 4 4 days
0 100 200 300 400 500
number of pixels
highly radioactive -] all pixels
pixels

End of Diversion:
“many-step aggregation in social animals”



Matter is Active:
self-organized, adaptive, ‘smart’,

information-processing, materials




Materials Science meets

Biology* to capture CO,

i Cf)z[g) Dissolution and Disassociation.
CO,(g) = CO,(aq)
CO,(aq) + H,0() = H,CO,4
H,CO, < HCO; + H'
HCO; <= C0} + H'
Ureolysis.
CO(NH,), + H,0 — NH,COOH + NH,

NH,COOH + H,0 — NH; + H,CO,
H,CO, < HCO; + H'
2NH; + 2H,0 = 2NH; + 20H"
HCO; + H' 4+ 20H = C03” + 2H,0
Overall Ureolysis and CaCO; Precipitation.
NH,CONH, + 2H,0 < 2NH, + CO%"

Ca®" + CO%™ = CaCO,(s)

(D
(2)
3)

4)

(5)

(6)

(7

@)

9

(10)

(11)

R

(*) Ref. kindly provided by Dr. Delora Gaskins (ULB)

s,
Power \

station £o2

compressor

SC-CO2

i

Injection well N
7

Cap rock
- .‘v.‘ +p .vnit--l l!l- 7 A
_i,".; O 55 i':

- Aquifer

~ Mineral trapping: Ca”* + C0O,%"~ CaCOs(s)

Solubility trapping: CO,(aq)+H,0(l) « H,CO.°

FIGURE 1. Schematic representation of microbially enhanced
carbon capture and storage.

“Microbially Enhanced Carbon Capture and Storage by Mineral-Trapping and Solubility-Trapping”
A.C. Mitchell et al, Environ. Sci. Technol. 2010, 44, 5270-5276




Oscillations as a sculptor*

Fe| 0.75 M H,SO, + 20 mM Cl-galvanostatic oscillations

0 200 400 600 800 1000 (b)
tls

(*) Ref. kindly provided by Ms. Dimitra Spanoudaki (ULB)
Sazou et al., PCCP, 8841(11), 2009



www.foresight.cnr.it/working-groups/wg-materials

INTRANET MNational Research
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Home About Us Working Groups Events Reports Documents

STEM MATERIALS
MISSION
In nature, living organisms consist of a limited number of primary components and chemical bonds, organized in complex

systems capable to adapt to diversified environmental conditions. Materials are very rarely adaptable, and often require a large
number of components to achieve high performances in specific functions. A comparison between organisms and materials



Outline of the talk:

Part 2. Dynamics of Information:
Decision making and Collective Motion



PART 2: Dynamics of Information

\\

"
stable / o

unstable
X A
) % b 5

sition to Rayleigh—Bénard patterns arising beyond the instability of t

=]

Fig. 1. Upper part: Simple pendulum. Lower part: Three manifestations of Complexity in everyday
experience. Clockwise Bird flocking, the earth-atmosphere system, trading in the stock market.




Collective exploitation of their environment by
‘'simple’ organisms in Complex Systems

Pitchfork Bifurcation Spatio-temporal Pattern Formation



—

Coordinated Aggregation: History & Hysteresis

*

Figure 1. Experimental setup for the study of aggregation/segregation dynamics in an environment containing
two equal patches and its relationship with the model defined by eq. (4) (a). Positive feedback networks of
conspecific and heterospecific interactions : symmetrical (b) and asymmetrical (c) case.

Stamatios C.
Nicoljs Jean-Louis
Deneubourg

“Coordinated aggregation in complex systems:

an interdisciplinary approach”’
Eur. Phys. J. ST 225, 1143-7 (2016)
V. Basios, S.C. Nicolis, J.L. Deneubourg

e 4
YukioiPegio
Gunji




Real Soldier-Crab decision making
monitoring & data

Figure 3. Snapshots of the real soldier crabs, Mictyris guinotae, wandering in a tank under the laboratory condition. An
individual is represented by a circle accompanied by its previous trajectory. (Online version in colour.)



The standard Viscek Model of Flocking Behaviour:

7t + At) = 7(t) + 5;(t)At, i=1,...,N, 7,0 €R*

_ _ [cos¥(t) —sind;(t)) - .
’ v; (t+ At) = (sinf}i(t) con % [} ) gy, 4=1,...,IN

ﬁi(t+At):<ﬁi(t)>r+77i(t) 1=1,....N (3)

where 7;(t) is a “noise” term taken randomly (at each time step again) from

the uniform distribution [—7/2,7/2], and < 9;(t) >, is the average angle
of all particles inside a disk of radius » with the particle ¢ at its center.



“Emergence of coherent motion in
aggregates of motile coupled maps”
A. Garsia Cantu-Ros, C. Antonopoulos,
V. Basios, Chaos, Solitons & Fractals
44 (2011) 574.

= =i

[ =1

i B
VitAr — T,v;.
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Vicsek Model
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Bayes Inference:

Rescaling Chance due to

Bayes Theorem

P(B| A)P(4)

PU|B) = =

where A and B are events and P(B) # 0.

« P(A | B) is a conditional probability: the likelihood of event A

occurring given that B is true.

« P(B | A) is also a conditional probability: the likelihood of event B

occurring given that 4 is true.

o P(A) and P(B) are the probabilities of observing A and B
independently of each other; this is known as the marginal probability.

Rule of Three !!!
Reduction to Unity !!

Renormalization !

P(A n B)
P(B|A)

p(a) P(A) P(E|AL\\. P(A 0 B)

__®P(AnB)
P(A) P(B|A)
P(A)  P(BIA) o
Knowledge of one \. P(A n B)
diagram is sufficient
to deduce the other

Use Bayes' Theorem to convert between diagrams

P(x|B) P(B) = P(anB) = P(B|a) P(ax)

Knowledge of any i
3 independent values P(B N A)
is sufficient to deduce n
all 24 values /.<F’(A|B)//.
P PB) PR P(B n A)
< B P(B n A)
P(B)  P(AIB)
e P(En A)




An Example of Bayesian Inference:
Medical Test for disease A by test B (1/3)

Py =.005 the probability that the disease will be present in any particular person

P(-a) = 1—005 =.995 |the probability that the disease will not be presentin any particular person

Ppia) = .99 the probability that the test will yield a positive result [B] if the disease is present [A]
P-Bja) = 1—99 = .01 EE.]E probability that the test will yield a negative result [-B] if the disease is present

— the probability that the test will yield a positive result [B] if the disease is not present
PBl~-a) = .05 -A]

P(-B|-A) = 1—05 = .95 the probability that the test will yield a negative result [-B] if the disease is not
present [-A]

P(B| A)P(A)
P(B)

P(A|B) =




Example: Medical Test for disease A by test B (2/3)

Py =.005 the probability that the disease will be present in any particular person

P-a) = 1—.005 = .995 |the probability that the disease will not be presentin any particular person

PBla) =-99 the probability that the test will yield a positive result [B] if the disease is present [A]
P(-gja) = 1—99 = .01 Et}-:: probability that the test will yield a negative result [~B] if the disease is present

— the probability that the test will yield a positive result [B] if the disease is not present
PiBl-a) = .05 -A]

P(-B|-A) = 1—.05 = .95 the probability that the test will yield a negative result [~B] if the disease is not
present [~A]

PB)= [P(Bm) X P(A)] + [P(B|~,f-\) X F’(~A}] the probability of a positive test result [B], irrespective of
- [_gg X _005]+[_05 X _995] = 0547 whether the disease is present [A] or not present [~A]

P-B) = [F’(~B|A} X F’(A}] + [P(~B|~A} X P(~A}] the probability of a negative test result [~B], irrespective of
= [.01 X _005]+[.95 X _995] ~ 9453 whether the disease is present [A] or not present [~A]




Example: Medical Test for disease A by test B (3/3)

P(a) = .005 the probability that the disease will be present in any particular person

P-a) = 1—.005 = .995 |the probability that the disease will not be presentin any particular person

Pa) =-99 the probability that the test will yield a positive result [B] if the disease is present [A]

the probability that the test will yield a negative result [-B] if the disease is present

P-pja) =1—99 = .01 A]

the probability that the test will yield a positive result [B] if the disease is not present

P{B|=Aj = .05 [~A]

the probability that the test will yield a negative result [-B] if the disease is not

P(-BJ-a) =1—05=.95 present [<A]

Pi)= [F’(B|A) X P(A)] + [F’(B|~A) X P(——A)] the probability of a positive test result [B], irrespective of
_ [_gg ; .005]+[_05 X _995] - 0547 whether the disease is present [A] or not present [~A]

Pr-B)= [F‘(~B|A) X P(A)] + [P(~B|~ﬁ} X F’(~A}] the probability of a negative test result [~B], irrespective of
_ [.01 X _005]+[_95 x _995] ~ 9453 whether the disease is present [A] or not present [~A]

=) -[p p /p the probability that the disease is present [A] if the testresult is
(AIB) [ (BIA) X (A)] ®) positive [B] (i.e., the probability that a positive test result will be a true
=[.99 x .005] /.0547 = .0905 |positive)

o) - [P P ] /p the probability that the disease is not present [-A] if the test result is
(~AIB) BI=A) % 7=A) (B) positive [B] (i.e., the probability that a positive test result will be a false
=[.05x .995] / .0547 = 9095 |positive)

P - [P X P ] /p the probability that the disease is absent [-A] if the test result is
(~AI~B) (=BI-A) = 7 A) B)| negative [-B] (i.e., the probability that a negative test result will be a
=[.95 x .995] / .9453 = 99995 |true negative)

the probability that the disease is present [A] if the testresult is
negative [~B] (i.e., the probability that a negative test result will be a

Pal-B) = [P(~B|A)X F’(A)] / P-B)
=[.01 x .005] / .9453 = 00005 |false negative)




Bayesian Inverse Bayesian
non-linear feedback decision process

Likelihood
a
= (data) ]
I Bayes’ Theorem [
I P
I / Prior I Posterior
= j -
(b) Likelihood
(data) -]

I ﬂ’k Converse Bayes’' Theorem | @
= ' -




Tito-Fortunato Arrechi (2013),
Yukio-Pegio Gunji & Vasileios Basios (2014)

A Apprehension = Bayes Inference

=

-

Data
B Judgment = Inverse Bayes Inference
Recalled o
Memory

Superimposed
Landscape

Non - algorithmic
Jump



data (d,, d....) BIB hypotheses

(h, = 20:80, h,=50:50, h,=80:20)

Bayesian inference

A

e If \

'Y YeXe)e XXX X XXX X
® Pl (hy) =P° (hld,) [ooooo}"'[ooooo} "'[ooooo}
O P> (hk)zp1 (hyldy) @0000 00000 00000

00000 00000 00000
O P3 (h)=P?(hd))

O P* (h)=P3 (h)d,) 00600) | - (38338 ... [: : : 8 8}

)
38835
=( f(do) ~0.8 ' ﬂ p4 (d.|h )=f4 (d.) inverse
oy £(d})~0.2 ol o) L Bayesian
e
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Modified “Vicsek Model”
with:

Bayesian & Inverse Bayesian
Inference Process
(BIB) as
internal steering

(xf;+l1},;+l)

o = 4 o : a 2
P(1|h) P(2lh)
P (Olh) P (31h)

6

Figure5. Schematic diagram of data and hypothesis adopted by a time series of real soldier crabs. (Online version in colour.)
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Figure10. Snapshots of the swarm model based on BIB inference. Swarming phase (a) and dispersing phase (b). (Online version




Philosophical Transactions of the Royal Society
A Phys.& Math. 376: 20170370.
http:/Idx.doi.org/10.1098/rsta.2017.0370

November 2018

WASEDA University

Inverse Bayesian inference
in swarming behaviour of
soldier crabs

Yukio-Pegio Gunji', Hisashi Murakami?, Takenori

Tomaru® and Vasileios Basios*


http://dx.doi.org/10.1098/rsta.2017.0370

Complexity Science In
Sociology & Economics

Networks (social, transactions, epidemic ... ), Optimization.

Prediction of potentially disastrous state transitions.

____ Critical point

time, t,
as control parameter

t*



““Nonlinear science introduces a new way of thinking based
on a subtle interplay between qualitative and quantitative
techniques, between topological, geometric and metric
considerations, between deterministic and statistical aspects.

[t uses an extremely large variety of methods from very
diverse disciplines, but through the process of continual
switching between different views of the same reality these
methods are cross-fertilized and blended into a wunique
combination that gives them a marked added value.

Most important of all, nonlinear science helps to identify the
appropriate level of description in which wunification and
universality can be expected.”’

“Introduction to Nonlinear Science”
by Gregoire Nicolis
(Cambridge Univ. Press, 1995)






Gregoire Nicolis’ 60 years celebration, June 1999, ULB, Brussels
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